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Abstract Robotic Process Automation (RPA) is an

emerging technology that allows organizations au-

tomating repetitive clerical tasks by executing scripts

that encode sequences of fine-grained interactions with

Web and desktop applications. Examples of clerical

tasks include opening a file, selecting a field in a Web

form or a cell in a spreadsheet, and copy-pasting data

across fields or cells. Given that RPA allows us to auto-

mate a wide range of routines, it raises the question of

which routines should be automated in the first place.

This paper presents a vision towards a family of tech-

niques, termed Robotic Process Mining (RPM), aimed

at filling this gap. The core idea of RPM is that repet-

itive routines amenable for automation can be discov-

ered from logs of interactions between workers and Web

and desktop applications, also known as user interac-

tions (UI) logs. The paper defines a set of basic concepts

underpinning RPM and presents a pipeline of process-

ing steps that would allow an RPM tool to generate

RPA scripts from UI logs. The paper also discusses re-

search challenges to realize the envisioned pipeline.
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1 Introduction

Robotic Process Automation (RPA) tools, such as

UiPath Enterprise RPA Platform1 and Automation

Anywhere Enterprise RPA2, allow organizations to au-

tomate repetitive work by executing scripts that en-

code sequences of fine-grained interactions with Web

and desktop applications [2]. A typical clerical task that

can be automated using an RPA tool is transferring

data from one system to another via the user interfaces

of these systems. For example, Fig. 1 shows a spread-

sheet with student records that need to be transferred

one by one into a Web-based study information system.

This task involves, for each row in the spreadsheet, se-

lecting the cells, copying the value in a selected cell to

the corresponding field in the Web form, and submit-

ting the form after a row has been processed. Routines

such as this one can be encoded in an RPA script and

executed by an instance of an RPA tool’s runtime en-

vironment, also known as an RPA software robot (or

RPA bot for short).

A number of case studies have shown that RPA

technology can lead to improvements in efficiency and

data quality in business processes involving clerical

work [5, 20]. However, while existing RPA tools allow

one to automate a wide range of routines, they do not

allow one to determine which routines are candidates

for automation in the first place.

The current practice for identifying candidate rou-

tines for RPA is through interviews, walk-throughs, and

detailed observation of workers conducting their daily

1 https://www.uipath.com/
2 https://www.automationanywhere.com/
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work, either in situ or using video-recordings [4]. These

empirical investigation methods allow analysts to iden-

tify candidate routines for automation and to assess the

potential benefits and costs of automating the identified

routines. However, these methods are time-consuming

and, therefore, face scalability limitations in organiza-

tions where the number of routines is very high.

In this position paper, we lay down a vision for

a new class of tools, namely Robotic Process Mining

(RPM) tools, capable of discovering automatable rou-

tines from logs of interactions between workers and Web

and desktop applications. The envisioned RPM tools

take as input logs of user interactions with applications

(so-called user interaction logs, or UI logs) that contain

event records, such as selecting a field or cell, copying

and pasting, and editing fields or cells. Given a UI log,

RPM tools aim to identify automatable routines and

their boundaries, collect variants of each identified rou-

tine, standardize and streamline the identified variants,

and discover an executable specification corresponding

to a streamlined and standardized variant of the rou-

tine. The routines produced as the output should be

defined in a platform-independent language that can

be compiled into a script and executed in an RPA tool.

In this way, RPM tools will assist analysts in draw-

ing a systematic inventory of candidate routines for au-

tomation. This input is useful in environments where

the number of routines is too large for purely manual

identification. We envision that the identified candidate

routines will then be analyzed in terms of potential ben-

efit and automation costs using a combination of au-

tomatically derived attributes (e.g. frequency, number

of steps in the routines, amenability to automation) in

conjunction with domain knowledge (e.g. potential fi-

nancial benefits of automating the routines). Once can-

(a) Student records spreadsheet(b) New Record creation form

Fig. 1 Extract of spreadsheet with student data that

needs to be transferred to a Web form

didate routines for RPA have been selected, RPM will

then help analysts to produce executable specifications

of routines (or sub-routines), which can be used as a

starting point for the automation effort.

The paper defines a set of concepts underpinning

RPM and presents a pipeline of processing steps that

would allow an RPM tool to generate RPA scripts from

UI logs. Based on this pipeline, the paper then dis-

cusses research challenges and points out to possible

approaches to address these challenges.

The rest of the paper is structured as follows. Sec-

tion 2 presents the proposed RPM framework. Section 3

discusses challenges and directions to realize this frame-

work. Section 4 positions RPM with respect to related

fields, and Section 5 draws conclusions and acknowl-

edges ethical considerations.

2 RPM Framework

Below, we clarify the context and scope of RPM and

propose a conceptual framework for RPM as well as a

pipeline that decomposes the RPM problem into rela-

tively independent steps.

2.1 Context and Scope

Several partially overlapping definitions of RPA can be

found in the research and industry literature. For ex-

ample, [5] defines RPA as a category of software tools

designed “to automate rules-based business processes

that involve routine tasks, structured data, and deter-

ministic outcomes.” Meanwhile, [2] defines RPA as “an

umbrella term for tools that operate on the user inter-

face of other computer systems in the way a human

would do.” On the other hand, Gartner [35] defines

RPA as a class of tools that perform [if, then, else]

statements on structured data, typically using a com-

bination of user interface interactions, or by connecting

to APIs to drive client servers, mainframes or HTML

code. An RPA tool operates by mapping a process in

the RPA tool language for the software robot to fol-

low, with runtime allocated to execute the script by a

control dashboard.

Three elements come out from the above definitions.

First, RPA tools are designed to automate routine tasks

that involve structured data, that are driven by rules

(e.g. if-then-else rules), and that have “deterministic

outcomes”. Second, RPA tools are able to execute tasks

that involve user interactons, in addition to other op-

erations accesible via APIs (in any case, automated ac-

tions). And third, RPA tools allow one to specify scripts
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and to operate (i.e. to run and monitor via control dash-

boards) software bots that execute these scripts.

By synthesizing these elements, we define RPA as

a class of tools that allow users to specify deterministic

routines involving structured data, rules, user interface

interactions, and operations accessible via APIs. These

routines are encoded as scripts that are executed by soft-

ware bots, operated via control dashboards.

Depending on how the control dashboard is used, we

can distinguish two RPA use cases: attended and unat-

tended [35]. In attended use cases, the bot is triggered

by a user. During its execution, an attended bot may

provide and take in data to/from a user. Also, in these

use cases, the user may run the bot’s script step-by-

step, stop the bot, or otherwise intervene during the ex-

ecution of the script. Attended bots are suitable for rou-

tines where dynamic inputs (i.e. inputs gathered during

a routine) are required, where some decisions or checks

need to be made that require human judgment, or when

the routine is likely to have unforeseen exceptions and

it is important to detect such exceptions. For example,

entering data from an invoice in a spreadsheet format

into a financial system is an example of a routine suit-

able for attended RPA, given that in this setting some

types of errors may have financial consequences.

Unattended RPA bots, on the other hand, execute

scripts without human involvement and do not take in-

puts during their execution. Unattended RPA bots are

suitable for executing deterministic routines where all

execution paths (including exceptions) are well under-

stood and can be codified. Copying records from one

system into another via their user interfaces through a

series of copy-paste operations is an example of a rou-

tine that could be executed by an unattended bot.

In light of the above, we can classify RPA as

a specific type of process automation technology –

a broader class of software tools that include Busi-

ness Process Management Systems (BPMS), document

workflow systems, and other types of workflow automa-

tion tools [15]. A key difference between RPA on the one

hand and BPMS and workflow systems on the other is

that RPA is meant to automate deterministic routines

that involve automated steps where either an interac-

tion is performed with the UI of an application or an

API is called (in both cases the steps are automated).

In contrast, BPMS and workflow systems are designed

to automate processes that involve combinations of au-

tomated tasks and manual tasks. Related to this dis-

tinction, BPMS and workflow systems are designed to

automate end-to-end processes consisting of multiple

tasks, performed by multiple types of participants (e.g.

roles, groups). Meanwhile, RPA tools are developed to

automate smaller routines, which correspond to indi-

vidual tasks in a process, or even steps within a task,

such as creating an invoice or a student record in an

information system. As such, RPA tools and BPMSs

are complementary. A BPMS may trigger an RPA tool

to perform a given step in a process.

RPA tools allow us to automate a wide range of

routines, thus raising the following question: How to

identify routines in an organization that may be ben-

eficially automated using RPA? We envision a class of

tools, namely RPM tools3, that addresses this question.

Specifically, we define RPM as a class of techniques and

tools to analyze data collected during the execution of

user-driven tasks in order to support the identification

and assessment of candidate routines for automation

and the discovery of routine specifications that can be

executed by RPA bots. In this context, a user-driven

task is a task that involves interactions between a user

(e.g. a worker in a business process) and one or more

software applications. Accordingly, the main source of

data for RPM tools consists of UI logs

In line with the above definition, we distinguish

three main phases in RPM: (1) collecting and pre-

processing UI logs corresponding to executions of one or

more tasks; (2) identifying candidate routines for RPA;

and (3) discovering executable RPA routines.4 Below

we analyze the concepts involved across these three

phases and we refine these phases into a tool pipeline.

2.2 Concepts

The main input for RPM is a UI log, which has to be

recorded beforehand. A UI log is a timestamped se-

quence of events performed by a single user in a single

workstation, and involving events across one or more

applications (including Web and desktop applications).

An example of a UI log, which we use herein as a run-

ning example, is given in Table 1.

Each row in this example corresponds to one event

(e.g. accessing url “http://www.unimelb.edu.au”, click-

ing button “New record”, etc.). Each event is character-

ized by an event type (e.g. click button, edit text field),

3 Some commercial and open-source tool developers use the
term task mining to refer to RPM, e.g. in the PM4Py toolset
http://pm4py.pads.rwth-aachen.de/task-mining/
4 Once an RPA routine has been automated via an RPA

bot, a fourth phase is to monitor this bot in order to detect
anomalies or performance degradation events that may signal
that the bot may need to be adjusted, re-implemented, or re-
tired. While relevant from a practical perspective, this phase
is orthogonal to the three previous phases since it is relevant
both for bots developed manually and bots developed using
RPM techniques. Furthermore, previous work has shown that
existing process mining tools are suitable for analyzing logs
produced by RPA bots for monitoring purposes [17].
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Table 1 Example of UI log

Timestamp Event Type Source Arg 1 Arg 2 Arg 3
1 2019-03-03T19:02:18 Open file File System FileName: student data.xls
2 2019-03-03T19:02:23 Go to URL Web URL: “http://www.unimelb.edu.au”
3 2019-03-03T19:02:26 Click button Web Label: “New record”
4 2019-03-03T19:02:28 Go to cell Worksheet SheetName: Sheet1 Address: A2 Value: “John”
5 2019-03-03T19:02:31 Click text field Web Label: “First Name” Value: “”
6 2019-03-03T19:02:37 Edit text field Web Label: “First Name” Value: “John”
7 2019-03-03T19:02:40 Go to URL Web URL: “https://www.distraction.com
8 2019-03-03T19:07:33 Open email Email Client From: “student@abc.com” Message: “Dear Course

Coordinator, ”
9 2019-03-03T19:07:40 Click button Email Client Label: “Reply”
10 2019-03-03T19:07:48 Edit text field Email Client Label: “Message” Value: “Dear Student, your

request had been processed”
11 2019-03-03T19:07:50 Click button Email Client Label: “Send”
12 2019-03-03T19:07:55 Go to URL Web URL: “http://www.unimelb.edu.au”
13 2019-03-03T19:08:02 Click text field Web Label: “Last Name” Value: “”
14 2019-03-03T19:08:05 Edit text field Web Label: “Last Name” Value: “Do3”
15 2019-03-03T19:08:08 Click text field Web Label: “Last Name” Value: “Do3”
16 2019-03-03T19:08:12 Edit text field Web Label: “Last Name” Value: “Doe”
17 2019-03-03T19:08:17 Click text field Web Label: “Country of residence” Value: “”
18 2019-03-03T19:08:21 Edit text field Web Label: “Country of residence” Value: “Australia”
19 2019-03-03T19:08:28 Click button Web Label: “Save”
20 2019-03-03T19:08:35 Click button Web Label: “New record”
21 2019-03-03T19:08:38 Go to cell Worksheet SheetName: Sheet1 Address: A3 Value: “Albert”
22 2019-03-03T19:08:39 Copy Worksheet Content: “Albert”
23 2019-03-03T19:08:40 Copy Worksheet Content: “Albert”
24 2019-03-03T19:08:42 Click text field Web Label: “First Name” Value: “”
25 2019-03-03T19:08:43 Paste Web Value: “Albert”
26 2019-03-03T19:08:44 Edit text field Web Label: “First Name” Value: “Albert”
27 2019-03-03T19:08:47 Go to cell Worksheet SheetName: Sheet1 Address: B3 Value: “Rauf”
28 2019-03-03T19:08:49 Copy Worksheet Content: “Rauf”
29 2019-03-03T19:08:52 Click text field Web Label: “Last Name” Value: “”
30 2019-03-03T19:08:53 Paste Web Value: “Rauf”
31 2019-03-03T19:08:54 Edit text field Web Label: “Last Name” Value: “Rauf”
32 2019-03-03T19:08:58 Go to cell Worksheet SheetName: Sheet1 Address: C3 Value: “Germany”
33 2019-03-03T19:09:01 Copy Workseet Content: “Germany”
34 2019-03-03T19:09:03 Click on text field Web Label: “Country of residence” Value: “”
35 2019-03-03T19:09:04 Paste Web Value: “Germany”
36 2019-03-03T19:09:05 Edit text field Web Label: “Country of residence” Value: “Germany”
37 2019-03-03T19:09:09 Tick box Web Label: “International student”
38 2019-03-03T19:09:14 Click button Web Label: “Save”
... ... ... ... ... ... ...

timestamp and other information (e.g. label of a button,

value of a cell, etc.), called payload, sufficient enough to

reconstruct the performed activity. For example, for an

event that refers to clicking a button, it is important

to store a unique identifier of this button (e.g. either

the element identifier, or its name if this is unique in

the page). Likewise, for an event that refers to editing

a field, an identifier of the field as well as a new value

assigned to that field are required attributes. Events

of the same type usually are characterized by the same

amount of attributes in payload. Depending on a source

application, events contain different attributes in pay-

load. For example, the events performed on a spread-

sheet (e.g. Excel spreadsheet) contain information such

as spreadsheet name and position of the involved cell

or range of cells, while Web-based events are charac-

terized by the corresponding Web page, name and/or

identifier of the involved HTML element. Events in UI

log are chronologically ordered based on their times-

tamps. Some events may be aggregated into actions of

higher level. For example, two events Go to cell and

Copy cell content can be merged into one action called

Copy cell.

In order to obtain a UI log, all user interactions re-

lated to a particular task have to be recorded. This

recording procedure can be long-running, covering a

session of several hours of work, if the user performs

multiple instances of this activity one after the other.

During such a session, a worker is expected to perform a

number of tasks of the same or of different types. The UI

log used as running example describes the execution of

a task corresponding to transferring student data from

a spreadsheet into the Web form of a study informa-

tion system. The Web form requires information such

as student’s first name, last name and country of resi-

dence. If the country of residence is not Australia, the

user needs to perform one more step, indicating that

the student be registered as an international student.

Each execution of a task is represented by a task

trace. In our running example, there are two traces be-

longing to the new record creation task. From the log

we can see that the user performed the creation of a

new record in two different ways. In the first case, they

filled in the form manually, while in the second case,

they copied the data from a worksheet and pasted it

into the corresponding fields.
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Fig. 2 Class diagram of RPM concepts

Given a collection of task traces, the goal of RPM

is to identify a repetitive sequence of actions that can

be observed in multiple task traces, herein called a rou-

tine, and identify routines amenable for automation.

For each such routine, RPM then aims to extract an

executable specification (herein called a routine spec-

ification). This routine specification may initially be

captured in a platform-independent manner, and then

compiled into a platform-dependent RPA script to be

executed in a specific RPA tool.

To summarize, Fig. 2 presents a class diagram cap-

turing the above concepts and their relations.

2.3 RPM Pipeline

As mentioned earlier, the three main phases of RPM

are: (1) UI log collection and pre-processing; (2) can-

didate routine identification; and (3) executable rou-

tine discovery. In order to provide a more detailed view

of the steps required to achieve the goals of RPM, we

decompose the first phase into the recording step it-

self, and three pre-processing steps, namely removal of

irrelevant events (noise filtering), segmentation of the

log into routine traces, and simplification of the result-

ing routine traces. We then map the second phase into

a single step and we decompose the third phase into

two steps: the discovery of platform-independent rou-

tine specifications and compilation of the latter into

platform-specific specifications (scripts). This decom-

position of the three phases into steps is summarized in

the RPM pipeline depicted in Fig. 3. Below we discuss

each of the steps in this pipeline.

The recording of an UI log involves capturing low-

level UI events, such as the selection of a field in a form,

the editing of a field, opening a desktop application, or

opening a Web page. UI log recording may be achieved

by instrumenting the software applications (including

Web browser) used by the workers, via plugin or ex-

tension mechanisms. Logs collected by such plugins or

extensions may be merged in order to produce a raw

UI log, corresponding to the execution of one or more

tasks by a user during a period of time. This raw log

usually needs to undergo preprocessing in order to be

suitable for RPM.

As stated above, a UI log may contain events that

do not belong to an execution of any task, herein called

noise. Noise may occur for example when the user is

interrupted or gets distracted during the execution of

a task, leading to performing activities that are not

relevant to the task in question (e.g. pausing the trans-

fer of student records to reply to an email). Accord-

ingly, the first step in the pipeline (after the recording

step) is dedicated to identifying and filtering out events

that do not belong to any task (noise filtering) and as

such should not be automated. In our running example,

event 7 (visiting https://www.distraction.com) as well

as events 8-11 (replying to email) are examples of noise.

Given a noise-filtered UI log, the next problem is

to identify the boundaries of the task traces. We call

this problem segmentation. Specifically, the purpose of

segmentation is to identify sequences of consecutive ac-

tions that represent the execution of a task. The in-

put of segmentation is a UI log containing a single se-
quence of events, while the output is a set of traces

representing the execution of one or several tasks. We

observe that noise filtering and segmentation are inter-

twined. By identifying the boundaries of task traces,

we also understand which events are not part of any

task, hence representing noise. Segmentation can be

performed in several ways. For example, one can use

domain knowledge or combine a UI log with transac-

tional data recorded by an enterprise system to identify

the end events of a task [24].

Task traces may contain events that have no effect

on the final outcome. Such events constitute waste. For

example, a task trace may contain redundant events

(e.g. pressing Ctrl-C twice consecutively on the same

field, which has the same effect as doing it only once).

Another type of waste has to do with defects, e.g. typ-

ing in a text field, then deleting the content of the

field and typing something different. In our running ex-

ample, events 13, 14 and 22 represent overprocessing

waste. Accordingly, the pipeline includes a simplifica-
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tion step, that aims at waste identification and removal.

The simplification step includes aggregation of events

into higher-level actions. In this way the task traces will

be much more compact and concise, and thus easier to

translate into a target language.

Given a set of simplified task traces, the next step

is to identify candidate routines for automation. This

step aims at extracting repetitive sequences of actions

that occur across multiple task traces, a.k.a. routines,

and identifying which such routines are amenable for

automation. The output of this step is a set of automat-

able or semi-automatable routines, ranked accordingly

to their automation potential (e.g. based on their exe-

cution frequency and length).

After the candidates for automation are identified,

the next step is executable (sub)routines discovery. For

each candidate routine, this step identifies the acti-

vation condition (events 3 and 20 in Table 1), which

indicates when an instance of the routine should be

triggered, and the routine specification, which specifies

what actions should be performed within that routine.

The executable (sub)routine discovery step leads to

a platform-independent representation of the routine,

which can then be compiled into a script targeted at a

specific RPA tool via a final compilation step. This step

generates an executable script by mapping actions from

the routine specification into commands in the scripting

language of the target RPA tool.

Fig. 3 RPM pipeline

The generated bot can then be executed in attended

or unattended settings. In attended settings, given an

activation condition extracted from the routine specifi-

cation, it can notify the user about its “readiness” to

perform the routine when the condition is met. It can

be paused during execution, so the user can make small

corrections if needed and then resume work. In unat-

tended settings, the bot works independently without

human involvement.

Let us demonstrate this RPM pipeline on the run-

ning example (Table 1):

Noise filtering. Events e7, e8, e9, e10, and e11 are

noise and must be filtered out from the log.

Segmentation. The main goal of the task captured

in the running example is to create a new record of

a student. Thus, the final event of a task trace is the

actual creation of such record, achieved as a result of

clicking button “Save”. Thus, there are two task traces:

– Trace 1: e1, e2, e3, e4, e5, e6, e12, e13, e14, e15, e16,

e17, e18, e19;

– Trace 2: e20, e21, e22, e23, e24, e25, e26, e27, e28,

e29, e30, e31, e32, e33, e34, e35, e36, e37, e38;

Simplification. Events e13 and e14 in Trace 1 as well

as event e22 in Trace 2 are waste and must be removed.

There are three possible events merges:

– Events {e5, e6}, {e15, e16} and {e17, e18} can be

merged into Write into text field action with pay-

load p = {Label, Value}.
– Events {e24, e25, e26}, {e29, e30, e31} and {e34,

e35, e36} can be merged into Paste into text field

action with payload p = {Label, Value}.
– Events {e21, e23}, {e27, e28} and {e32, e33} can

be merged into Copy cell action with payload p =

{Content, Address, Value}.
Candidate routines identification. The actions re-

lated to the modification of the Web-form fields occur

in both traces. Thus, the corresponding sequence of ac-

tions constitutes a routine. Note that Trace 1 contains

some actions that cannot be automated (the user fills in

the form manually), while Trace 2 consists of automat-

able actions only.

Executable (sub)routines discovery. The activa-

tion condition for extracted routine is Click button

“New Record” (e3 and e20 of the running example).

Fig. 4 presents the New Record Creation routine spec-

ification.

Compilation. The routine specification is then com-

piled into RPA script. Here we “translate” each step

from the specification model into the specific command

in the language of the target RPA tool. Fig. 5 provides

an example of script generated from the discovered rou-

tine specification.
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Fig. 4 New Record Creation routine specification

3 Challenges and Directions

Each step of the RPM pipeline presented in Fig. 3 gives

rise to research challenges. Next, we give an overview

of some of these challenges and propose approaches to

tackle them.

Recording. The main challenge in this step is to iden-

tify what actions must be recorded. The same action

(e.g. mouse click) can either be important or irrelevant

in a given context. For example, a mouse click on a

button is an important event but a mouse click on the

background of a Web page is an irrelevant event. Also,

when a worker selects a Web form, we need to record

events at the level of the Web page (the Document Ob-

ject Model – DOM) in order to learn routines at the

level of logical input elements (e.g. fields) and not at

the level of pixel coordinates, which are dependent on

screen resolution, window sizes, etc. Existing UI event

recording tools, such as JitBit Macro Recorder5, Tiny-

5 https://www.jitbit.com/macro-recorder/

Fig. 5 New Record Creation script

Task6, and WinParrot7, save all the actions performed

by the user at a too low level of granularity, with ref-

erence to pixel coordinates (e.g. click mouse at coor-

dinates 748,365). As a result, the UI interaction logs

generated by these tools are not suitable for extracting

useful routines. RPA tools (e.g. UiPath Enterprise RPA

Platform, and Automation Anywhere Enterprise RPA)

provide recording functionality. However, this function-

ality is intended to record RPA scripts. These tools do

not capture details about the values of different fields,

as these values are not relevant for RPA script genera-

tion. Hence, a new family of recording tools is needed

to record UI logs required for RPM.

In recent work, [21] introduced a tool to record UI

logs in a format that is suitable for RPM. The tool

records not only the UI actions (selecting a field, edit-

ing a field, copying into or pasting from the clipboard)

but also the values associated with these actions (e.g.

the value of a field after an editing event). The tool

supports MS Excel and Google Chrome. The tool also

simplifies the recorded UI logs by removing redundant

events (e.g. double-copying without pasting, navigation

between cells in Excel without modifying or copying

their content). The applicability of such tools, however,

is limited to desktop applications that provide APIs for

listening to UI events and accessing the data consumed

and produced by these events. To achieve a more gen-

eral solution, it may be necessary to combine this lat-

ter approach with OCR technology in order to detect

UI events and associated data from application screen-

shots, as outlined in [24,29].

6 https://www.tinytask.net/
7 http://www.winparrot.com/
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Noise filtering. One of the main challenges of this

stage is to separate noise from events that contribute

to tasks. A possible solution is to treat noise as chaotic

events that can happen anywhere during process execu-

tion. One technique for filtering out such chaotic events

is described in [34]. However, if noise gravitates towards

one particular state or set of states in the task (e.g. to-

wards the start or the end of the task), techniques such

as the one mentioned above may not discover it and

consequently not filter it out. Moreover, some events

can be mistakenly removed due to the different ways

the same task can be performed and induce what may

mistakenly appear to be chaotic sequences of events.

Thus, it is important to consider the data perspective,

i.e. values of data objects that are manipulated by the

actions and events. This way one can identify the events

and actions that share the same attribute values (e.g.

copying a value from a worksheet and then pasting it

in a Web form), or have the same source/origin (e.g. all

the actions are performed on the same web site). The

events that do not share any data attributes and/or

values or originate from different sources most likely

constitute noise.

Segmentation. An UI log, in its raw form, consists

of one single sequence of events recorded during a ses-

sion. During this session, a user may have performed

several executions of one or of multiple tasks. In other

words, an UI log may contain information about several

tasks, whose actions and events are mixed in some or-

der that reflects the particular order of their execution

by the user. Moreover, the same task can be “spread”

across multiple logs, for example if a task is performed

by several users working on different work stations. Be-

fore identifying candidate routines for automation, we

therefore need to segment an UI log into traces, such

that each trace corresponds to one execution of a task.

We call this step segmentation.

In some scenarios, segmentation may be accom-

plished by combining transactional data recorded by

enterprise information systems together with user in-

teractions logs, as proposed in [24]. For instance, af-

ter pressing button “Save” in our running example, the

event Create record can be generated, which marks the

end point of the current task trace. The problem of this

approach, however, is that such transactional data may

only provide limited information about the task.

This problem of segmentation is akin to that of Web

session mining – widely studied in the field of Web log

mining [25] – where the input is a set of clickstreams

and the goal is to extract sessions where a user en-

gages with a web application to fulfill a goal. Most of

traditional approaches to session identification can be

used, however, only in the context of Web interactions,

as they are based on Web organization specifics. For

example, one of the key concepts they use is that a

page must have been reached from a previous page in

the same session. However, tasks are usually performed

across different systems and applications, and the Web

browser is just one of many such applications. An al-

ternative approach is to use time-based heuristics, for

instance, to set a limit for total session duration or max-

imal allowed time difference between two events. This

approach is unreliable since users may be involved in

different activities when performing the tasks. In addi-

tion, the tasks are usually performed in batches, and

that increases the difficulty of using time-based heuris-

tics in correct identification of the tasks’ boundaries.

As an example, let us take the task of filling in Web

forms by copying a data from a spreadsheet. For each

row in the spreadsheet, the user creates a new form,

copies the required data from a column of that row and

pastes it into the corresponding text field, then presses

the submit button and starts the task all over again.

In this example, the time difference between the end of

the first task and the start of the second can be smaller

than the time between events of the same task, leading

to an incorrect segmentation.

The problem of UI log segmentation is also related

to that of correlating uncorrelated event logs in pro-

cess mining [7, 8, 16]. However, in this previous work,

the problem is addressed in restrictive settings. Ferreira

et al. [16] address the problem when the process (in

our case the routine) does not have cycles/repetitions,

whereas Bayomie et al. [7, 8] assume that a process

model is given as input, which means that the model

of the routine is known. Also, the approaches in [16]

and [7] were shown to produce rather inaccurate results,

whereas RPM seeks to identify routines with high levels

of confidence, given that replicating a routine inaccu-

rately can lead to costly errors, especially in unattended

bot contexts.

Simplification. Even if an event belongs to a task,

it may still be redundant. For example, the user filled

in a text field with a mistake, and then had to fill it in

again. In this case, the events that belong to the first

time of filling in the text field are redundant. Depend-

ing on the context, the same event may be integral part

of a routine or it may be redundant. Thus, classical

frequency-based filtering approaches, like [11], cannot

be applied to address this problem. One of the possible

solutions is to use sequential pattern mining techniques

to distinguish between events that are part of main-

stream behavior and outlier events [31]. However, in

case some events are rarely seen during task execution

they can be mistakenly treated as outliers. The outlined

problem creates a need for semantic filtering. A group
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of events can be combined into an action of a higher

semantic meaning. The challenge here is to identify the

semantic boundaries of an action and attributes to form

its payload.

Candidate routines identification. The following

step can be decomposed into two substeps: 1) Routines

extraction; 2) Identification of automatable routines.

Each of the presented substeps faces its own challenges.

The first substep aims at identification and extrac-

tion of repetitive sequential patterns that represent the

execution of routines. One of the challenges is that dur-

ing routing execution the user can perform other actions

that do not constitute a routine. When identifying the

routines, such actions have to be ignored. In this regard,

sequential pattern mining techniques, in particular the

ones that work with gapped patterns [23] can be used.

Another challenge is that sometimes the actions that

constitute a routine can be performed in random order

(e.g. when filling in a Web form). Thus, it is difficult

to identify frequently-occurring patterns. One possible

solution is to standardize the task traces and then iden-

tify repetitive patterns. An alternative is to identify se-

quential patterns and then cluster them according to

the routines they describe. This latter approach is de-

scribed in [9].

The main goal of the second substep is to identify

routines amenable for automation. A discovered rou-

tine is considered to be a candidate for automation if

this routine is either semi- or fully automatable. In this

context, the challenge is how to identify whether the

routine is automatable or not. In [17], the authors de-

scribe how to assess the automation potential of a task.

Frequency of execution of a task is presented as the

main criterion for automation. However, if the task is

frequent there is no guarantee it is automatable.

Lacity and Willcocks [20] propose high-level guide-

lines for determining if a task is a candidate for au-

tomation in the context of a case study at Telefonica.

However, this work does not provide a formal and pre-

cise definition of automatable task, which would allow

us to automate the identification of automatable rou-

tines. In fact, a major challenge is how to formally char-

acterize what makes a routine suitable for RPA, in a

sufficiently precise way to enable the design of efficient

algorithms to identify candidates for RPA from large

volumes of UI logs. One possible solution is to use the

notion of determinism. A routine can be automated if

every event belonging to the routine is deterministically

activated and uses the data produced from the previous

actions (e.g. manual input into a text field is an exam-

ple of a non-deterministic action). The challenge here is

to identify non-deterministic events in a UI log, which

reflect non-deterministic actions being performed. One

of the problems that can arise is the case of partially-

automatable routines. For example, somewhere in the

middle of a routine a non-deterministic action happens

and this action splits the routine into two automatable

sub-routines. Thus, it is important to be able to iden-

tify automatable sub-routines. We also observe that not

every routine is worth to be automated. Automation

of one routine can bring much more benefits than au-

tomation of another. Thus, the cost-benefit analysis of

routine automation is an important task [20].

Executable routines discovery. Given a set of rou-

tine traces, discovery consists in constructing a rou-

tine specification that encodes the routine traces in the

form of a control-flow model enhanced with data flow.

The challenge here is that there may be multiple (al-

ternative) ways of performing the same routine, e.g.

multiple workers may perform the same routine differ-

ently. Hence, when discovering a routine specification,

we need to focus on capturing all the preconditions un-

der which the routine should be triggered and the effects

(postconditions) of the routine. This calls for dedicated

quality measures for routine specifications, which cap-

ture the extent to which the preconditions and effects

of the observed routine traces are covered by a given

routine specification. Also, in case two different routine

traces describe the same effects, one may want to pick

the optimal way of performing the routine. Searching

for the best alternative variant of a routine is a chal-

lenging task.

Another challenge of executable (sub)routine discov-

ery stems from the fact that some repetitive routines

may be triggered only under certain conditions. For ex-

ample, when a purchase order is of type “retail-EU”,

then a certain sequence of actions is performed in or-

der to comply with specific EU regulations and this

sequence of actions corresponds to a repetitive routine

that can be automated. On the other hand, when the or-

der is of type “retail-US” another routine is performed.

Or, alternatively, we might find that the handling of or-

ders of type “retail-EU” follows some specified sequence

of steps (that can be captured via an executable process

model), whereas for “retail-CN”, the handling of the

order is ad-hoc and no regularity can be found. There-

fore, handling of “retail-EU” orders can be automated

by means of an executable model, whereas processing

of “retail-CN” orders cannot. Recent work [10] has put

forward the idea of using rule mining techniques, such

as RIPPER, to discover conditions under which a given

routine can be automated. However, the applicability

of these techniques on real-life RPM scenarios has yet

to be tested, and is likely to raise scalability and ro-

bustness challenges.
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Another challenge in this step is to discover the data

transformations that occur within each action in a rou-

tine. Indeed, if we want an RPA bot to reproduce the

actions of a routine, we need to encode in the bot’s

script how the parameters of each action are computed

from the routine’s input parameters or from the param-

eters of previous actions in the routine. Recent work [10]

suggests that this step in the discovery of executable

routines can be implemented using existing methods

for automated discovery of data transformations “by

example” [3, 19]. However, these methods suffer from

scalability issues. In addition, their scope (i.e. the types

of transformations they can discover) is rather limited.

Thus, new advances in the field of automated discov-

ery of data transformations are needed to make data

transformation applicable in the context of RPM.

Compilation. Given a routine specification, the com-

pilation step aims to generate an executable RPA script

that implements the specification. This step requires

the correct identification of the application elements

involved during routine execution (e.g. button or text

field on the Web form). For example, when converting

an action of clicking a button on a Web page into an

executable command, we need to identify the HTML el-

ement that represents this button and extract its DOM

position. Such information can be recorded by a log-

ger during the recording step. However, sometimes this

information may be missing. For example, some of the

Web elements (e.g. links) do not have any identifiers

that can be used to locate them on the page. In cases

when Web sites are created dynamically and consist of

a large amount of nested containers it is very difficult to

extract the correct location of the element. When work-

ing with custom applications without an API, it may

not be possible to identify the type of an event correctly.

Therefore, an intelligent recognition of the elements is

required. In this regard, technologies such as OCR may

be used, but the challenge here is to preserve the se-

mantics of the actions recorded and to capture all the

data involved during their execution.

4 Related Work

The discovery of candidate routines for automation via

RPA tools is so far a largely unexplored problem. Re-

cent work [22] sketched an approach to identify passages

in textual descriptions of business processes (e.g. work

instructions) that might refer to tasks amenable for au-

tomation. This approach, however, may lead to impre-

cise results due to the complexity of natural language

analysis. Also, it requires textual documentation of suit-

able quality and completeness, and assumes that tasks

are performed exactly as documented. In reality, work-

ers may perform steps that are not fully documented in

order to deal with exceptions and variations. Hence, a

task that might appear as automatable according to its

work instructions might turn out not to be a automat-

able in practice.

Another body of related work includes approaches

for auto-completing Web forms with default values or

predicted values [18]. These approaches help users dur-

ing manual form filling, but they do not automate rou-

tines in the way RPA tools do.

In addition to the above work, the RPM vision pre-

sented in this paper is related to other sub-fields of data

mining that seek to discover behavioral models from

different types of logs. Below, we discuss the relations

between RPM and three such fields, namely process

mining, web usage mining, and user interface (UI) log

mining.

Process mining. RPM can be positioned as an ex-

tension of the field of process mining [1]. RPM can be

seen as a subset of the broader field of process min-

ing. Specifically, discovering RPA routines is closely re-

lated to the problem of Automated Process Discovery

(APD), which has been widely studied in the field of

process mining. The purpose of APD techniques is to

discover business process models from event logs record-

ing the execution of tasks in enterprise systems. A sig-

nificant subset of APD algorithms focus on discover-

ing process models from a control-flow perspective [6].

This subset of APD algorithms does not consider the

data that is taken as input and produced as output by

the tasks of the process, nor the data used by a pro-

cess execution engine to evaluate branching conditions.

Another subset of APD techniques target the problem

of discovering process models with data-driven branch-

ing conditions [12] as well as control-flow relations that

only hold under certain conditions [26]. These latter

techniques provide a starting point for developing tech-

niques for discovering RPA routines. Indeed, in order to

discover RPA routines, we need to discover the activa-

tion conditions that trigger a routine, and possibly also

other conditions within the routine. Another subset of

APD techniques focus on discovering simulation mod-

els [27]. The latter type of models can be given as input

to business process simulators, which execute them in

a stochastic sense.

Notwithstanding the rich body of work in the field of

process mining, we are not aware of techniques that dis-

cover executable process models ready to be deployed

or compiled (without significant manual enhancement)

into a business process execution engine. In particular,

we are not aware of any work on automated process dis-

covery that tries to discover the data transformations

(i.e. mappings between inputs and outputs) in auto-

matically discovered process models. Yet, these data
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transformations are essential to discover process mod-

els that can be executed by a process execution engine

or by an RPA tool.

There are similarities between UI logs and event

logs used in process mining. Specifically, both types of

logs consists of timestamped records, such that each

record refers to the execution of an action (or task) by

a user. Also, each record may contain a payload con-

sisting of one or more attribute-value pairs. Some com-

mercial process mining vendors have exploited the simi-

larities between UI logs and business process event logs

in order to offer RPM-related features. For example,

the Minit8 process mining tool provides a multi-level

process discovery feature to support some RPM tasks.

Specifically, given an event log recording the execution

tasks and a UI log, Minit is able to generate a two-level

process map. The first level shows the tasks recorded in

the log extracted from the enterprise system. Each task

can be expanded into a second-level process map show-

ing the UI actions and their control-flow relations. In

this way, the tool supports the (visual) identification of

tasks that have relatively simple internal structures and

could, therefore, be potentially automated. However, it

cannot determine if a task contains fully deterministic

(sub-)routines nor can it produce executable specifica-

tions of deterministic routines. Also, the tool assumes

that there is a clear relation between the events in the

UI log and those in the business process event log. In

other words, it does not address the segmentation step

in the RPM pipeline.

Another commercial tool, namely Kryon Process

Discovery,9 identifies candidate routines for RPA by an-

alyzing UI logs in conjunction with screenshots taken

while users perform their work on one or more appli-

cations. However, the candidate routines that Kryon

identifies may or may not be automatable, depending

on the actual data values that users have entered. If the

data values that are entered in a particular step cannot

be determined from the values of previously observed

values, it means that the user is providing inputs ei-

ther from external data sources (not observed in the

UI) or from their own domain knowledge, and hence

that step of the routine is not automatable. In other

words, not all routines that are identified as candidates

for automation by this tool can be automated.

While there are similarities between UI logs on the

one hand, and event logs used for process mining on

the other hand, there are four some notable differences.

First, event logs capture events at a higher level of ab-

straction. Specifically a record in an event log typically

refers to the execution of an entire task within a busi-

8 https://www.minit.io/
9 https://www.kryonsystems.com/process-discovery/

ness process, such as Check purchase order or Transfer

student records. Such tasks can be seen as a composi-

tion of lower-level actions, which may be recorded in

an UI log. For example, task Transfer student records

may involve multiple actions to copy the records asso-

ciated with a student (name, surname, address, course

details) from one application to another. Second, UI

logs do not come with a notion of case identifier (or

process instance identifier), whereas event logs typically

do. In other words, events in a UI log are not explicitly

correlated, and for this reason, they may need to be seg-

mented as discussed in Section 2.3. Third, a record in

an event log often does not contain all input or output

data used or produced during the execution of the cor-

responding task. For example, a record in an event log

corresponding to an execution of task Transfer student

records, is likely not to contain all attributes of the cor-

responding student (e.g. address). Meanwhile, the pres-

ence of every input and output attribute in an UI log

is necessary for RPM purposes. If some input or out-

put attributes are missing in the UI log, the resulting

routine specification would be incomplete, and hence

the resulting RPA bot would not perform the routine

correctly. A fourth difference is that event logs are typi-

cally obtained as a by-product of transactions executed

in an information system, rather than being explicitly

recorded for analysis purposes. The latter characteristic

entails that event logs are more likely to suffer from in-

completeness, including missing attributes as discussed

above, but also missing events. For example, in a pa-

tient treatment process in a hospital, it may be that

the actual arrival of the patient to the emergency room

is not recorded when a patient arrives by themselves,

but it is recorded when a patient arrives via an am-

bulance. In other words, the presence or absence of an

event in an event log depends on whether or not the in-

formation system is designed to record it, and whether

or not the workers actually record it. Meanwhile, an UI

log is recorded specifically for analysis purposes, which

allows all relevant events to be collected subject to the

capabilities of the UI recording tool.

Web usage mining. Web usage mining seeks to dis-

cover and analyze sequential patterns in Web data, such

as click streams capturing user interactions with Web

applications [33]. Analyzing such data can help to opti-

mize the functionality of Web-based applications, pro-

vide personalized content to users, and find the most

effective logical structure for Web pages [25]. Web us-

age mining works with data at a similar level of gran-

ularity as RPM. Also, the data manipulated in Web

log mining is often uncorrelated, meaning that it repre-

sents a sequence of actions performed throughout sev-

eral sessions without explicit assignment of actions to
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a specific session. Given these similarities, Web usage

mining techniques could provide a starting point to re-

alize an RPM pipeline. For example, Web mining tech-

niques for extracting sessions from Web logs could be

adapted to address the problem of segmentation dis-

cussed above. On the other hand, Web usage mining

techniques do not address the problem of discovering

candidate routines for automation. Also, RPM differs

from Web usage mining in that it is not restricted to

Web applications.

UI log mining. The proposed RPM vision is also re-

lated to the topic of UI log mining. In the context

of desktop assistants, research proposals such as Task-

Tracer and TaskPredictor have tackled the problem of

analyzing UI logs generated by desktop applications

in order to identify the current task performed by a

user and to detect switches between one task and an-

other [14,32]. Other related work in this area has tack-

led the problem of task identification and classification

from Desktop app UI logs [28,30] as well as the problem

of extracting frequent sequences of actions from noisy

UI logs [13] (which could constitute candidate routines

for automation). With respect to the previously cited

research, the novelty of RPM is that it seeks to discover

executable routine specifications by analyzing UI logs

that include inputs and outputs of actions (e.g. data

copied to or pasted from the clipboard, data entered

into cells), as opposed to purely considering sequences

of actions without the associated data.

5 Conclusion

We have exposed a vision for a new class of process

mining tools, namely RPM tools, capable of analyz-

ing event logs of fine-grained user interactions with IT

systems in order to identify routines that can be au-

tomated using RPA tools. As a first step to concretize

this vision, we decomposed this vision into a pipeline

and sketched challenges that need to be overcome to

implement each of the pipeline’s components. We also

illustrated possible directions to tackle these challenges.

The proposed RPM pipeline focuses on the discov-

ery of routines that can be executed in an end-to-end

manner by an RPA bot. This assumption is constrain-

ing. In reality, routines may be automated for a certain

subset of cases, but not for all cases (i.e. automation

may only be partially achievable). A key challenge be-

yond the proposed RPM pipeline is how to discover par-

tially deterministic routines. While a fully deterministic

routine can be executed end-to-end in all cases, a par-

tially deterministic routine can be stopped if the bot

reaches a point where the routine cannot be determin-

istically continued given the input data and other data

that the bot collects during the routine’s execution, e.g.

while copying records of purchase orders from a spread-

sheet or an enterprise system, the bot detects that this

order comes from China, so it stops because it does not

know how to handle such orders, or it does not find a

PO number (empty cell), and hence it cannot proceed.

Discovering conditions under which a routine cannot

be deterministically continued (or started) is a major

challenge for RPM.

The vision of RPM exposed in this paper focuses on

discovering automatable routines, which is only one of a

broader set of RPM operations that we foresee, namely

robotic process discovery. Besides robotic process dis-

covery, we envision that the field of RPM will encom-

pass complementary problems and questions such as

performance mining of RPA bots, e.g. ”What is the suc-

cess or defect rate of a bot when performing a given rou-

tine?”, ”What patterns are correlated with or are causal

factors of bot failures?”, as well as anomaly detection

problems, e.g. are there cases where the behavior of the

bot or the effects of the bot’s action are abnormal and

hence warrant manual inspection and rectification?
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